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 Abstract In Part III of his 1879 logic Frege proves a theorem in the theory of
 sequences on the basis of four definitions. He claims in Grundlagen that this proof,
 despite being strictly deductive, constitutes a real extension of our knowledge, that it
 is ampliative rather than merely explicative. Frege furthermore connects this idea of
 ampliative deductive proof to what he thinks of as a fruitful definition, one that draws

 new lines. My aim is to show that we can make good sense of these claims if we read
 Frege's notation diagrammatically, in particular, if we take that notation to have been
 designed to enable one to exhibit the (inferentially articulated) contents of concepts
 in a way that allows one to reason deductively on the basis of those contents.

 Keywords Diagrammatic reasoning • Frege • Ampliative proof

 In Part III of his 1879 logic (Frege 1879) Frege proves a theorem in the theory of
 sequences on the basis of four definitions. He claims in Grundlagen that this proof,
 despite being strictly deductive, constitutes a real extension of our knowledge, that
 it is ampliative rather than merely explicative: "From this proof it can be seen that
 propositions that extend our knowledge can have analytic judgments for their con-
 tent" (Frege 1884, §91). Frege furthermore connects this idea of ampliative deductive
 proof to what he thinks of as a fruitful definition, one that "[draws] boundary lines that
 were not previously given at all": "What we shall be able to infer from it [a fruitful
 definition], cannot be inspected in advance ... the conclusions we draw from it extend
 our knowledge, and ought therefore, on Kant's view, to be regarded as synthetic; and
 yet they can be proved by purely logical means, and are thus analytic" (Frege 1884,
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 §88). 1 I will suggest that we can make good sense of these claims if we read Frege's
 notation diagrammatically.2

 1 Background

 The ancient Greek mathematical practice of demonstrating using a drawn diagram
 provides the paradigm of diagrammatic reasoning: one begins by drawing a diagram
 according to certain specifications and then one reasons through the diagram to the
 desired conclusion. And as I have argued elsewhere (Macbeth 2010), the practice
 works in virtue of a very distinctive feature of the notation, the fact that collections of
 lines and areas in the drawn diagram can be regarded in various different ways as the
 reasoning progresses. In the first proposition of the Elements , for example, lines that

 are at one stage in the reasoning regarded as radii of a circle, as they must be to deter-
 mine that they are equal in length, are later regarded as sides of a triangle, as they must
 be if we are to conclude that we have constructed the desired equilateral triangle. The
 diagram has, then, three clearly discernable levels of articulation. First, there are the
 primitive parts out of which everything is composed: points, lines, angles, and areas.
 Then there are the geometrical figures that are composed of those primitive parts and
 form the subject matter of geometry: circles with their centers, circumferences, radii,

 and areas; triangles with their sides, angles, and areas; squares with their sides, angles,
 and areas; and so on. And finally, there is the whole diagram, the whole collection
 of lines, points, angles, and areas, whose various proper parts can be seen now this
 way and now that. It is precisely because the figures of interest - those at the second,
 middle level - both have (primitive) parts and are parts of the diagram as a whole that
 one can, for instance, introduce circles and radii into a diagram and then take out of it

 an equilateral triangle.
 Geometrical concepts, at least those of concern to Euclid, are given by parts in

 spatial relation: to be a circle is to be a plane figure all points on the circumference of
 which are equidistant to a center, to be an equilateral triangle is to be a triangle (itself
 defined by parts in relation) all sides of which are equal in length, and so on. And
 because they are, the contents of such concepts can be exhibited in paper-and-pencil
 drawings. A Euclidean diagram of, for instance, a circle, looks like a circle not so much
 because it is an instance of a circle as because the relation of its parts displays what it
 is to be a circle, namely, to have all points on the circumference equidistant to a center.
 A drawn circle in a Euclidean diagram is, in other words, a Peircean icon; it exhibits
 the relevant relations of parts, and in so doing generates the appearance of a circle.
 And because, as I have indicated, a Euclidean diagram is composed of primitive parts
 that are combined in wholes that are geometrical figures, and are themselves proper

 1 In "Boole's Logical Calculus and the Concept-script" written shortly after the 1879 logic, Frege singles
 out his definition of following in a sequence in particular as being fruitful in this sense (Frege 1880/1881,
 p. 34).

 2 Tappenden (1995), one of the few sustained discussions of our topic, suggests that "Frege's question of
 how analytic judgments can extend knowledge in the way important mathematical innovations do . . . [is] a
 question of staggering difficulty" (p. 450). Needless to say, I do not think that it is. Although not easy, the
 question is (as I hope to demonstrate) tractable if we read Frege's notation, as I do.
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 parts of the diagram, one can perceptually reconfigure various parts in new ways in
 order to reach the desired conclusion. The demonstration is fruitful, a real extension

 of our knowledge for just this reason: because we are able perceptually to take parts
 of one whole and combine them with parts of another whole to form a new whole, we
 are able to discover something about our geometrical concepts that was simply not
 there, even implicitly, in the materials with which we began.
 In the seventeenth century, Descartes inaugurated a radically new form of math-

 ematical practice, the practice of algebraic problem solving in the formula language
 of arithmetic and algebra (see Macbeth 2004). At first this practice seemed utterly
 different from the paper and pencil reasoning of Euclid; it seemed the work of the
 pure intellect. (See Descartes' account of mathematical practice in the fifth meditation
 of his Meditations on First Philosophy.) But as Kant would later point out, even this
 form of mathematical practice is constructive and in a broad sense diagrammatic. One
 cannot do mathematics as Descartes does it without the essentially written language
 of arithmetic and algebra; one must see, or imagine seeing, the equations, and must
 perform, or imagine performing, the needed manipulations on them. Descartes' math-
 ematical practice, like ancient mathematical practice, involves the construction of a
 kind of diagram, though it is one that is symbolic rather than ostensive. In both cases
 content is formulated in a system of written marks in a way that enables the discovery
 of new mathematical truths.

 The mathematical practice of constructive algebraic problem solving that was inau-
 gurated by Descartes in the seventeenth century was followed in the nineteenth by what

 has been called the Denken in Begriffen tradition of proving theorems by reasoning
 deductively from defined concepts (see Laugwitz 1999). Instead of trying to construct
 solutions to problems in the symbolic language of arithmetic and algebra, mathe-
 maticians such as Riemann sought to describe the essential properties of the desired
 functions and to infer deductively what must be true of a function so described. Math-

 ematical functions, hitherto understood as particular sorts of analytical expressions, as
 symbolic formulae, were now to be conceived as mappings determined by properties
 such as continuity and differentiability. For these nineteenth century mathematicians,
 "the objects of mathematics were no longer formulae but not yet sets. They were
 concepts" (Laugwitz 1999, p. 305). The task (in Dedekind's words) was "to draw
 the demonstrations, no longer from calculations, but directly from the characteristic
 fundamental concepts, and to construct the theory in such a way that it will ... be in
 a position to predict the results of the calculation".3

 At first there was no means whereby to set out such thinking visually. And because
 there was not, many nineteenth century mathematicians held that this new mathemati-
 cal practice was "too philosophical", that it was not "real mathematics" at all.4 It would

 have been natural, then, for a mathematician of the Riemann school to try to develop

 3 Quoted in Stein ( 1 988, p. 24 1 ).

 Kronecker, for instance, wrote to Cantor in August of 1884: "I acknowledge true scientific value - in
 the field of mathematics - only in concrete mathematical truth, or to state it more pointedly, 'only in math-
 ematical formulas'" (quoted in Laugwitz 1999, p. 327). Weierstrass voiced essentially the same sentiment
 in a lecture delivered in 1 886: "even though it may be interesting and useful to find properties of the func-
 tion without paying attention to its representation ... the ultimate aim is always the representation of a
 function" - that is, an equation, an analytical expression of it (quoted in Laugwitz 1999, p. 329).
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 a new sort of symbolism, a system of written marks that would do for this new form

 of mathematical practice what diagrams had done for ancient Greek geometry and
 the symbolic language of arithmetic and algebra had done for early modern algebra
 and analysis, a system of written marks that would enable one to set out on paper this
 new practice of thinking in concepts, Denken in Begriffen. Although Kant had thought
 it impossible, perhaps there could be a kind of concept-writing or concept-script, a
 Begriffsschrift. In 1879, Gottlob Frege, a Jena mathematician of the Riemann school
 (see Tappenden 2006), published a little monograph introducing the written language
 that he had devised for this purpose. Modeled on the formula language of arithme-
 tic, Frege's Begriffsschrift was to enable one to exhibit the contents of mathematical
 concepts in written marks in a way enabling one to reason deductively from those
 contents.5

 2 A new sort of written language

 Frege's Begriffsschrift was to do for the nineteenth century mathematical practice of
 reasoning from concepts, Denken in Begriffen , what Euclid's diagrams, Arabic numer-
 ation, and Descartes' symbolic language had done for earlier forms of mathematical
 practice; it was to provide a system of written marks within which to reason in math-
 ematics. Frege's thought was "to supplement the formula language of arithmetic with
 symbols for the logical relations in order to produce ... a conceptual notation" (Frege
 1882a, p. 89). "I wish to blend together the few symbols which I introduce and the
 symbols already available in mathematics to form a single formula language" (Frege
 1882b, p. 93). Much as a Euclidean diagram formulates the contents of geometrical
 concepts in a mathematical tractable way, that is, in a way that enables one to discover
 new truths in geometry, so Frege's task was to formulate the contents of mathemati-
 cal concepts generally in a way enabling the discovery of new truths. As one builds
 numbers out of numbers in the formula language of arithmetic so Frege would build
 concepts out of concepts in his formula language of pure thought.6 In Begriffsschrift
 "we use old concepts to construct new ones ... by means of the signs for generality,
 negation, and the conditional" (Frege 1880/1881, p. 34).

 Consider, for example, the concept PRIME NUMBER. To say that a number is prime
 is to say that it is not divisible without remainder by another number. That is, a number
 is prime iff it is not arithmetically related in a particular way to any other numbers.
 So, if he is to construct such a concept in his language, Frege needs special signs
 enabling the expression both of negation and of generality. Because the form of math-
 ematical reasoning he is concerned with is deduction, that is, the relation of ground
 and consequent, Frege furthermore chooses the conditional as his fundamental logical
 connective (Frege 1880/1881, p. 37). His three primitive signs for expressing logical
 content as it figures in mathematical concepts such as that of being prime are the

 5 As he notes in the Preface to Begriffsschrift , Frege's immediate motivation for devising his concept-script

 was the difficulty of reasoning rigorously from complex mathematical concepts in written natural language.

 6 See Frege ( 1 880/1 88 1 , especially p. 1 3).
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 negation and conditional strokes, and the concavity for the expression of higher-level
 concepts and relations involving generality.
 Isolating the primitive logical notions that are needed to serve as the "logical

 cement" binding old concepts into new, and devising written signs for them, was
 the easy part. The hard part was to figure out how it is possible to exhibit the contents

 of concepts at all . Frege needed not merely to say what a particular content amounts
 to (as we did above for the case of the concept prime number) but to exhibit the
 inferentially articulated contents of concepts themselves. Much as a drawn circle in
 a Euclidean diagram iconically displays the content of the concept CIRCLE - that all
 points on the circumference are equidistant from a center, so that one can infer from
 the drawn circle that all its radii are equal in length - so Frege needed a way of writing

 that would display the contents of concepts such as that of being prime in a way that
 would support inferences. The task was not merely to record necessary and sufficient
 conditions for the application of a concept, what is the case if the concept applies; it
 was to show , to set out in written marks, the contents of concepts as these contents
 matter to inference. And to do that Frege needed to invent a radically new sort of
 written language, not merely a new system of written marks but a fundamentally new
 kind of system of written marks.

 A drawing of a geometrical figure in Euclid displays the content of the concept of
 that figure, what it is to be, say, a circle or triangle conceived as a relation of parts.
 An equation in the symbolic language of Descartes (that is, the language of elemen-
 tary algebra) does not in the same way display conceptual content. Instead it exhibits
 arithmetical relations, for instance, that which holds among the lengths of the hypot-
 enuse and other two sides of a right triangle: a2 -f b2 = c2, where с is the length of
 the hypotenuse and a and b the lengths of the other two sides. Frege, we will see,
 effectively combines these two ideas. As Euclid does, he will exhibit the (in this case,
 inferentially articulated) contents of mathematical concepts, and he will do this in the
 manner of Descartes, by displaying the (now logical rather than arithmetical) relations
 that obtain among the constituents of those concepts. In order for this to work, how-
 ever, Frege must learn to read the symbolic language of arithmetic in a radically new
 way, in effect, as like a Euclidean diagram whose parts can be conceived now one way
 and now another.

 We begin with a mathematical language, that is, a system of written marks within
 which to do mathematics, specifically, the formula language of arithmetic. In this
 system the various signs - the numerals, the signs for arithmetical operations, and
 so on - all have their usual meanings. In virtue of those meanings, equations in the
 language serve to display various arithmetical relations that obtain among numbers
 (or magnitudes more generally). The equation '24 = 16', for instance, displays an
 arithmetical relation that obtains among the numbers two, four, and sixteen.7 In this
 equation, the Arabic numeral '2' stands for the number two, the numeral 4* stands
 for four, the numeral 46' stands for sixteen, and the manner of their combination

 shows the arithmetical relation they stand in. Now we learn to read the language dif-
 ferently, as a fundamentally different kind of language from that it was developed

 7 The example is Frege's (1880/1881, pp. 16-17).
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 to be. Instead of taking the primitive signs of the language to designate prior to and
 independent of any context of use, as we needed to do to devise the language in the first
 place, now we take those same signs only to express a sense prior to and independent
 of any context of use. Only in the context of a whole judgment and relative to some
 one function/argument analysis will we arrive at sub-sentential expressions, whether
 simple or complex, that designate something. If, for instance, we take the numeral '2'
 to mark the argument place, the remaining expression designates the concept fourth
 ROOT OF SIXTEEN. If instead the numeral 4' is regarded as marking the argument
 place, the remainder designates the concept logarithm of sixteen to the base
 TWO. And other analyses are possible as well. The language is, then, symbolic much
 as the language of elementary algebra is, but its primitive signs nonetheless function in
 the way the written marks for points, lines, angles, and areas function in Euclid. In the

 language as Frege conceives it, the primitive signs only express a sense independent
 of a context of use. Only in the context of a proposition and relative to an analysis
 into function and argument do the sub-sentential expressions of the language, whether
 simple or complex, serve to designate anything.8
 In both natural language and standard logic - for instance, the logic of Aristotle,

 of Leibniz, of Boole, and of our textbooks - one begins with concepts. Judgments are
 then formed by putting the given concepts together. What we have just seen is that
 Frege's logic is different insofar as "I come by the parts of the thought by analyzing
 the thought" (Frege 1919, p. 253). "Instead of putting a judgment together out of an
 individual as subject and an already previously formed concept as predicate, we do
 the opposite and arrive at a concept by splitting up the content of possible judgment"
 (Frege 1880/1881, p. 17). "I start out from judgments and their contents, and not
 from concepts ... I only allow the formation of concepts to proceed from judgments"
 (Frege 1880/1881, p. 16). By learning to read the symbolic language of arithmetic in
 a radically new way, its primitive signs as only expressing a sense independent of the
 context of a proposition and relative to an analysis, Frege is able to exhibit the contents
 of concepts in his new language, to display in a written array of marks those contents
 as they matter to inference.

 It is obvious that natural language does not function in the way that Frege suggests.
 Nor is the way Frege reads the formula language of arithmetic the way that language
 was originally designed to work, or even how it could have been originally designed
 to work. In order to learn to read a system of written marks the way Frege reads the
 formula language of arithmetic, one must first know how to read it as it was designed
 to be read, each primitive sign as having its meaning, its significance or designation,
 independent of a context of use. The new form of language Frege introduces is an
 essentially late fruit of intellectual inquiry; it is only after one has learned to read the
 language the usual way that one can learn to read it as Frege intends. We need first
 to know what, independent of any context of use, Frege's conditional and negation
 strokes mean (that is, their usual truth-functional meanings), and what second-level
 concept his concavity designates (namely, the concept, as we can put it, universally

 8 This feature of Frege's notation is explored at length in Macbeth (2005).
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 APPLICABLE9), before we can learn to read Begriffsschrift formulae in Frege's new
 way, as presenting Fregean thoughts that can be analyzed into function and argument
 in various ways.
 In order to design a Begriffsschrift for reasoning from concepts in mathematics

 Frege needed to find a mathematically tractable way of exhibiting the inferentially
 articulated contents of mathematical concepts. And, we have just seen, he solved that
 problem by learning to read an already meaningful language in a radically new way.
 Instead of beginning with primitive signs for concepts, he would arrive at an expression
 designating a concept only through a function/argument analysis of a whole Fregean
 thought. A concept word so generated can be highly articulated; that is, it can be com-
 posed of many primitive signs of the language in some particular array. It is in just this

 way that one exhibits, fully displays, the inferentially articulated content of a concept
 in Frege's system. The inferentially articulated content that is expressed by a complex
 concept word in Frege's language, which is itself directly a function of the senses of
 the primitive signs used in its expression, is a Fregean sense, one that contains a mode
 of presentation of the relevant concept.
 We have the language we need, a language within which to exhibit the inferen-

 tially articulated contents of concepts. Now we need to think about the definitions that
 provide the starting point for proofs in the mathematical practice of concern to Frege
 and about the rules governing legitimate moves from one Begriffsschrift formula to
 another in such proofs.

 3 Definitions and rules of inference in Begriffsschrift

 In Euclidean diagrammatic practice, definitions do not provide a starting point for
 proofs; definitions in that system belong to the antechamber, the preamble or prep-
 aration that one gives antecedent to the actual work of mathematics. In Euclid, it is
 not the definition but the diagram that formulates conceptual contents in a way that
 enables demonstration. In the mathematical practice that emerged over the course of
 the nineteenth century, the mathematical practice of concern to Frege, definition is the
 starting point for proof. A definition is, in this case, "a constituent of the system of
 a science" (Frege 1906, p. 302). And what it does, Frege tells us, is to stipulate that
 a newly introduced simple (that is, unanalyzable) sign is to have precisely the same
 meaning or designation as some complex expression formed, in the first instance, out
 of primitive signs. The definition exhibits, in the definiens , the inferentially articulated
 content of some concept, and introduces, in the definiendum , a simple sign that has, by
 stipulation, precisely that same meaning. The newly introduced simple sign designates
 just the concept that is designated in the definiens. But it is not, contrary to what Frege
 says, merely an abbreviation, a shorthand form of what is given in the definiens.10

 9 Although Frege's concavity is widely read as a universal quantifier, it is not one. It is a sign for a
 second-level concept. Thus, for instance, a sign formed from Frege's concavity together with the con-
 ditional stroke can be read as a sign for the second-level relation of subordination. See Macbeth (2005,
 §3.3).

 10 See, for instance, Frege (1879, §24), also Frege (1914, pp. 208-209).
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 Because defined signs are simple and unanalyzable, to prove a theorem the expression
 of which involves defined signs is to prove something about the particular concepts
 that are designated by those signs. The same is not true if all defined signs are replaced

 with their definitions. As we will see in some detail below, if one is to prove something
 about the particular concepts of interest then one needs both the defined simple signs
 designating those concepts and their definitions; one needs the simple, unanalyzable
 signs to ensure that one's theorem is about the particular concepts designated by those
 signs, and one needs their definitions if logical relations are to be discovered to obtain
 among those very concepts. Definitions are in this way and for this reason "a condition

 for insight into the logical linkages of truth" (Frege 1914, p. 302).
 In Euclidean diagrammatic reasoning, the mathematician's task is to find the dia-

 gram that will provide the medium of reasoning from one's starting point, a given line
 or triangle, say, to the desired endpoint, for instance, an equilateral triangle drawn on

 the given straight line, or the equality of the sum of the angles to two right angles.
 In reasoning in Frege, the mathematician's task is instead to find a path, that is, a
 sequence of inferences, from the given definitions to the desired theorem. Somehow,
 the defined signs that originally occur in different definitions must be joined together in

 the derived theorem. As we might think of it, our paper-and-pencil task is to construct
 (in something like Kant's sense) the theorem on the basis of the given definitions.
 Obviously, then, we need some rules of construction, rules like those found in alge-
 bra governing what one is allowed to write given what one has already written. And
 here, because my philosophical purposes are different from Frege's mathematical ones,
 I want to diverge from Frege's practice, though not from the spirit of that
 practice.

 Frege's aim in his proof of theorem 133 in Part III of the 1879 logic is to take
 the first step in his logicist program of showing that arithmetic is merely derived
 logic. Ultimately, what Frege wants to show is that all the concepts of arithmetic
 can be defined by appeal only to logical concepts and that all laws of arithmetic
 can be derived on the basis of purely logical laws. What matters to him, then, is
 that his proofs be maximally rigorous, which means in turn that, "because modes of
 inference must be expressed verbally", that is, in natural language rather than in Beg-
 riffsschrift , only one mode of inference is to be employed in the 1879 logic (Frege
 1880/1881, p. 37). All other modes of inference are instead given as formulae in
 Part II of Begriffsschrift , either as axioms or as theorems derived from those axioms
 according to Frege's one mode of inference. In Frege's presentation, then, both def-
 initions and modes of inference take the form of formulae, and this can easily lead
 one to think that they play essentially the same role in a Begriffsschrift proof. But
 they do not. The starting point for a proof in Begriffsschrift is not all those various
 formulae but only the definitions. The proof is, as Frege says, " from the definitions
 ... by means of my primitive laws".1 1 Thus, if we are not concerned with the mathe-
 matical project of logicism but want instead philosophical understanding of just how

 1 1 Frege ( 1 880/1 88 1 , p. 38); emphasis added.
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 reasoning from definitions works in Frege's system, it is better explicitly to treat the
 primitive and derived modes of inference introduced as formulae in Part II of the
 1879 logic instead as rules licensing inferences, that is, as rules governing what one
 is allowed to write given what one has already written beginning with the defini-
 tions.

 In Part III of Begriffsschrift , Frege provides four definitions and on the basis of
 those definitions proves an important theorem (numbered 133) relating three of the
 four defined concepts.12 In the course of the proof, defined signs that originally appear

 in different definitions are brought together, joined, in a single formula that displays
 the logical relation that is proven to obtain among the concepts designated by those
 defined signs. As we will see, two different sorts of inference are involved in this
 process of proof. First, there are those inferences, which I will call linear inferences,
 that serve merely to alter a given formula in some way, say, by reordering its condi-
 tions or by adding a new condition. The second form of inference, a joining inference,
 essentially involves two or more different formulae, both ultimately derived from a
 definition (or definitions), and serves to combine content from those different for-

 mulae using, in effect, some version of hypothetical syllogism.13 Beginning with the
 definitions, the strategy of the proof is, first, to alter in various ways the formulae
 initially given as definitions so that they share content, content that occurs once in
 the consequent of a conditional and once as the antecedent. Given this shared content,
 the remaining content, originally derived from two different definitions, can then be
 joined into a single judgment. The process is then repeated until all the defined signs
 are appropriately joined in the desired theorem. Figure 1 provides an overview of all
 the joins in Frege's proof of theorem 133. 14

 4 Some details

 Part III of Begriffsschrift is, Frege tells us (§23), "meant to give a general idea of
 how to handle" his system of written signs. It is to show, by example, how to prove
 theorems deductively on-the basis of explicitly formulated definitions in mathematics.
 We begin with four definitions, that of being hereditary in a sequence:

 - ¿ - i - 3 - г- s / F (a)
 |. 1-/(0, a) = j

 I

 12 Frege describes theorem 133 as "a sentence which, it seems to me, is indispensible in arithmetic,
 although it is one that commands little attention, being regarded as self-evident" (Frege 1880/1881, p. 38).

 1 3 These two forms of inference correspond to the two sorts of moves one can make in algebraic reasoning.
 Linear inferences correspond to moves governed by the familiar rewrite rules of the system. Joining infer-
 ences correspond to moves that in algebra are governed by the rule that one can put equals for equals. Much
 as hypothetical syllogism does, this second sort of move enables one to combine content from two different
 formulae in algebra. See Macbeth (forthcoming) for further discussion.

 14 In the proof as Frege presents it, there are some apparent divergences from this overall strategy; it is
 not hard to show that in fact the course of the proof is as described.
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 Fig. 1 Outline of the derivation of theorem 133 in part 111 of the Begriffsschrift. Straight lines indicate
 inferential steps, either linear inferences or joins; wavy lines indicate that a series of linear inferences have
 been suppressed

 that of following in a sequence, which Frege singles out as being a paradigm of a
 fruitful definition in his sense (Frege 1880/1881, p. 34):

 that of belonging to a sequence, which is merely truth-functional - z belongs to the
 /-sequence beginning with x just in case either z follows x in the /-sequence or z is
 identical to x - and hence not fruitful in Frege's sense:
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 h ~П,' íby.z,) ■ ,ЦН'"г') p

 and finally, that of being a single- valued function, which is a necessary condition of
 the truth of the theorem Frege aims to derive:

 - si - si - - S - I - a = e
 ^ I L/(D,a) г I /(¿,0
 [[

 Each of these definitions exhibits the inferentially articulated contents of the rele-
 vant defined concepts. They provide in the definiens (to the left of the triple-bar)
 a picture or map , that is, a Peircean icon, of the sense of a concept word, and
 in the definiendum (to the right of the triple-bar) a simple sign, newly introduced,
 that is stipulated to have the same meaning as the complex of signs on the defin-
 iens. And as we have seen, the contents of concepts can be exhibited in this way
 in Frege's notation in virtue of the fact that independent of an analysis, a particu-
 lar way of regarding it, a Begriffsschrift formula only expresses a sense, a Fregean
 Thought. In a definition, the definiens is a concept word that, on the analysis that
 is stipulated by the definition, exhibits the sense of the relevant concept word. In
 the judgment that immediately follows from a definition, as in any judgment in Fre-
 ge, this sense can be regarded in various ways. Because such concept words both
 have (primitive) parts and are themselves parts of whole formulae, they can, like the
 parts of a Euclidean diagram, be regarded now this way and now that. The defini -
 endum is a concept word for that same concept, but unlike the definiens it is a sim-
 ple sign. Because it is simple, it cannot in the context of a judgment be variously
 analyzed.

 What we want to derive is theorem 133 according to which if / is a single- val-
 ued function and у and m follow x in the /-sequence, then either m follows y or y
 belongs to the /-sequence beginning with m. That is, as we can also say in light of
 the definition of belonging to a sequence, if / is single- valued and y and m follow jc
 in the /-sequence, then either m follows y or y follows m or m and y are identical.
 In Begriffsschrift :

 JL

 I - I - I - I - I - ~/(«y. yp)
 P

 I - r~/0v >>"/))
 p

 I

 p

 I
 P
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 The task of the derivation is to join the various defined signs that originally occur in
 three different definitions in the theorem in the way shown. And as already indicated,
 there are two parts to the process of proof, the preparation and the joining of contents

 suitably prepared.
 The starting point is two definitions, '|| - definition-of-a = a ||' and '|| - defini-

 tion-of-ß = ß |Г, where what is to the left, the definiens , is a complex expression
 formed from primitive signs, and perhaps also previously defined signs, and what is
 on the right, the definiendum , is a simple sign newly introduced that is stipulated to
 have the same meaning as the definiens. The first step in the preparation is to trans-
 form both identities into conditionals, into, for instance, 'a-on-condition-that-fdefi-

 nition-of-a]' and '[definition-of-ß]-on-condition-that-ß' That is, in one the definiens
 is made the condition and in the other it is the definiendum that is made the condi-
 tion. (In practice, other combinations can also occur.) Then one transforms the two
 conditionals in various ways according to rewrite rules until they share content. That
 is, we derive something like 'a-on-condition-that-[definition-of-a]*' and also some-
 thing of the form '[definition-of-ß]*-on-condition-that-ß' where '[definition-of-a]*'
 is identical to '[definition-of-ß]*'. (In practice, things are of course not this simple.)
 Then we use some form of hypothetical syllogism to join the defined signs 'a' and
 'ß' in a single judgment as mediated by the common content: 'a-on-condition-that-ß'.
 The process is then repeated until all the defined signs occurring in theorem 133 are
 appropriately joined.
 Consider, for example, the chain of linear inferences that effect various transfor-

 mations of definition 76 preparatory to the join with formula 74 (itself derived from
 definition 69 by a series of linear inferences) that yields theorem 81. 15 The definition,

 again, is this:

 L L/(*, a) = ~f(xY,yp)
 I

 l a'/(á,a) J

 The first step is to convert this definition, more exactly the judgment that immediately
 derives from it, into a conditional judgment with the outer-most concavity removed,
 theorem 77:

 15 See the top left part of the outline of the proof in Fig. 1 .
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 'f(S,a )
 P

 That is, we make the defined sign, the definiendum , a condition on the content that is
 the definiens of the original definition.

 Now we make various modifications to this formula in a series of linear infer-

 ences preparatory to a joining inference. First, we switch around the three con-
 ditions, licensed by one of Frege's many reordering theorems, to derive theorem
 78:

 I - i - - i
 I

 p

 I

 s /F(ci)

 Д/(<5,а)

 Notice that in order to do this we had to regard theorem 77, derived from the defi-
 nition, in a new way. In order to see that theorem 77 is a conditional formed from
 definition 76, we had to regard the lowest condition on it as the condition on the rest
 of the formula conceived as the conditioned content, the consequent. But in order to
 see that we can reorder the conditions as we just did to get theorem 78, we needed
 to treat everything except - F(y) as a condition on that content as the conditioned
 content. And the point applies generally to reasoning in Begriffsschrift. Conditions
 that are at one point in the reasoning regarded as parts of the conditioned judgment in
 a conditional are at a different stage in one's reasoning regarded instead as conditions
 on a conditioned judgment. Just as is the case in reasoning in Euclid, the perceptual
 skill of seeing now this way and now that is required if one is to follow the course of
 the reasoning.

 Now we reorganize the content as licensed by Frege's second axiom of logic to
 yield theorem 79:

 Springer

This content downloaded from 
������������132.174.255.116 on Thu, 26 Jun 2025 16:24:38 UTC������������ 

All use subject to https://about.jstor.org/terms



 302 Synthese (20 1 2) 1 86:289-3 1 4

 I

 I
 P

 I

 « )

 - p-3-

 I

 S / F(a)

 That is, we remove the lowest condition in theorem 78 and reattach it to both the con-

 dition and the conditioned content of the remainder suitably regarded. The preparation
 is complete.

 We assume a similar preparation for the second formula needed in the join, namely,
 theorem 74 derived by a series of linear inferences from the definition of being hered-
 itary in a sequence:

 iiM
 I - fix, y)

 I

 «'f(8,a )

 Notice now that the lowest condition (itself a conditional) in theorem 79 is identical -

 save for the presence of the concavity in theorem 79 - to the conditioned judgment
 in theorem 74, regarded as having - F(x) as the sole condition on that conditioned
 content. But we know (from Begriffsschrift §11) that we can insert a concavity in
 the relevant place in theorem 74, and hence, together, these two formulae yield, by
 hypothetical syllogism, theorem 81 16 :

 16 In his actual practice Frege does not directly join content from two formulae as licensed by some
 version of hypothetical syllogism. Instead he forms, from one of the two original formulae, a new formula
 that together with the other of the two original formulae yields the desired conclusion by modus ponens.
 Theorems 5, 7, 19, and 20, for instance, are all used this way. But it is easy to see that all can equally well
 be treated as rules governing two premise inferences directly from the original two formulae, as we have
 done here.
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 I - i - i - i - F(y)

 P

 I

 <*'f(8,ct )

 In this formula the lowest condition, - F (j t), derives from theorem 74, ultimately from

 the definition of being hereditary in a sequence, and the rest of the formula derives
 from theorem 79, ultimately from the definition of following in a sequence. Much as in
 reasoning through a diagram in Euclid one perceptually joins parts of different wholes
 to form new wholes, so here we literally join, by means of hypothetical syllogism, parts
 of different wholes to form a new whole, ultimately, the whole that is theorem 133.
 Now we focus on the series of joins at the heart of the proof.

 y_

 112. j

 ^ s from the definition of belong-
 ing to a sequence by a series
 of linear inferences governed
 by the rewrite rules of Frege' s
 system.

 120. j I ( a == y) This formula is derived by a I - f(y, a)  series of linear inferences from

 the definition of being a single-

 Z.
 122. j ~f(Xy>aß) Because the condition in 112,

 j

 s in 120, the two can be joined,

 logism, in theorem 122.
 JL

 110. j

 у result of a chain of linear and

 y__ with definitions 69, 76, and 99.
 - ^ - I - Notice that its lowest (condi-

 I

 save for the presence of the
 concavity, to the (conditional)
 conditioned judgment in 122.
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 Y_

 124. i ~f(Xy,mß j) Theorem 124 is the result of
 у a join of 122 and 110. The

 - ^ /(^y » m/?) bottom two conditions derive

 r_

 1 14. i » Zß) Theorem 1 14 is derived from
 ^ a join of two judgments both

 - of which derive ultimately
 y_ from the definition of belong-

 the lowest condition in 114,
 with x for z and m for x, is

 identical to the topmost con-
 ditioned content in 124.

 y_

 126. J rß) Derived from a join of 124
 у and 1 14, with x for z and m

 - r<ß for x in 1 14, theorem 126 is
 y very close to what we want:

 ¿i is nontrivial work yet to be
 € ' done before the construction

 is completed.)

 Figure 2 provides a more graphic display of these joins. The rest of the proof is
 essentially similar.

 5 A real extension of our knowledge?

 Frege claims that his proof of theorem 1 33 extends our knowledge, that it is ampliative
 in some way that, say, the derivations in Part II of Begriffsschrift are not. But what,
 aside from complexity, does the proof of 133 have that the derivations in Part II do
 not? Although I have not tried to show it here, both require us to regard a formula now
 this way and now that. Both involve the construction of various formulae to take us
 from something we have to something we want. Both require a kind of experimenta-
 tion to determine not only what rule to apply but, in cases that involve the addition
 of a condition or conditioned judgment, what it is useful to add. Both seem, in other
 words, to be theorematic rather than corollarial in Peirce's sense (see Shin 1997).
 Finally, although most of the derivations in Part II do not, some of those derivations
 do involve inferences that join content from two axioms just as Frege's proof of 133
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 Fig. 2 Some central joins in Frege's proof of theorem 1 33

 involves inferences that join content from two definitions.17 Why should we think that
 a theorem that joins content from two definitions extends our knowledge, though a
 theorem that joins content from two axioms does not?
 The beginnings of an answer can be found in the fact that definitions and axioms

 of logic, as Frege understands them, are essentially different. An axiom of logic is a
 judgment, a truth. It is (or at least should be) immediately evident (< einleuchtend ), but

 17 For example, in Frege's derivation of theorem 33 from axioms 3 1 and 28, he constructs theorem 32, on
 the basis of axiom 3 1, to govern the passage from 28 to 33. But it is clear that we can instead take theorem
 7 (used in that construction) directly to license a two-premise inference from 31 and 28 to 33, one that joins
 content from the two axioms.
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 it is nonetheless a substantive truth that does not go without saying. A definition, we

 have seen, is not a judgment; it is a stipulation. Such a stipulation does immediately
 yield a judgment, but this judgment is one that is, in light of the stipulation, utterly
 trivial. It is not merely immediately evident as an axiom is (or should be); it is self-evi-
 dent (selbstverständlich). It goes without saying. But as we have also seen, although
 they are trivial in themselves, the judgments that derive from definitions enable one to
 discover, by way of proof, logical bonds among the concepts designated by the defined

 signs. In the case of a demonstration on the basis of definitions of concepts, we are
 not merely joining content in a thought that can be variously analyzed, as is the case
 in the derivation a theorem of logic from axioms; we are discovering logical bonds
 among the particular concepts that are designated by the defined signs. If in Frege's
 proof of theorem 133 we were to replace all the defined signs by their definitions, then
 we would have a mere theorem of logic, one subject to many, many different analyses.
 The theorem would not be about the concepts of following in a sequence, belonging

 to a sequence, and being a single- valued function at all. It would not be a theorem in
 the theory of sequences. It is only if we have definitions of concepts that we can forge

 logical bonds among those very concepts. And only in that case can the construction
 extend our knowledge of those concepts by revealing their logical relations one to
 another.

 In the course of a proof such as that of theorem 133, the simple defined signs are
 needed if what is to be established is to be unequivocally about the concepts of interest.

 But their definitions are needed if anything about those concepts is to be established.
 Here, then, we have something new that is made possible only in light of definitions,
 that is, judgments that involve, on the one hand, a simple sign, the definiendum , and on
 the other, a complex sign, the definiens , that exhibits the inferentially articulated con-
 tent of the relevant concept. In this case, and only in this case, content that is derived

 ultimately from the definiens of two different definitions, if it can be brought to be
 identical in the two cases, can be used to reveal a logical bond between the concepts

 designated by the defined signs. That it is these concepts and no others that are joined
 is determined by the defined signs; that they can be joined is made possible by the
 fact that the contents of those signs are also given in various complex expressions,
 expressions that are variously analyzable.
 In Part II of the 1879 logic Frege derives various theorems he will need in his

 proof, in Part III, of theorem 133. These theorems, and the axioms from which they
 are derived, function in the latter proof as rules licensing the linear and joining infer-
 ences that take us from Frege's definitions to his theorem. As Frege himself notes,
 his axioms and derived theorems in Part II were chosen precisely because and insofar

 as they are needed in the proof of theorem 133 of Part III: "Apart from a few for-
 mulae introduced to cater for Aristotelian modes of inference, I only assumed such

 as appeared necessary for the proof in question", that is, the proof of theorem 1 33
 (Frege 1880/1881, p. 38). Although the axioms and theorems of Part II are truths on
 Frege's view, they have, in other words, little intrinsic interest; they are valuable not
 in themselves but instead for what they enable one to prove on the basis of defined
 concepts. Independent of the proof of theorem 1 33, one would have no reason to derive
 this rather than that theorem of logic, no reason to start, or to stop, with any particular

 axioms or theorems of logic. The interest of the "sentences of pure logic" that we find
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 in Part II of Frege's Begriffsschrift lies in "the fact that they were adequate for the
 task" that is undertaken in Part III (Frege 1880/1881, p. 38).
 I have suggested that Frege's proof of theorem 133 is ampliative because it reveals

 logical relations among concepts and does so by combining, in joining inferences,
 parts of different wholes into new wholes. Much as reasoning through a diagram in
 Euclid does, such a course of reasoning realizes something new that had the potential to
 be derived but was in no way implicit in the starting point, of the derivation. Perhaps it
 will be objected that we can also formulate definitions in standard logical notation, and
 indeed, can reproduce the whole of Frege's proof in standard notation. The deduction
 written in standard notation is not ampliative. So why think that the deduction written
 in Frege's notation is ampliative? Furthermore, when Frege discusses ampliative proof
 in the long Boole essay and in Grundlagen , he focuses in particular on proofs from
 definitions that do not merely list characteristics but instead draw new lines (as he
 thinks of it). If Frege's definitions can draw new lines then so can definitions formu-
 lated in standard notation. But again, no deduction in standard notation, whether from
 "fruitful" definitions (those that draw new lines) or from unfruitful ones, can extend

 our knowledge in any real sense. How can it possibly be that a proof written in Frege's
 concept-script is ampliative when that very same proof written in standard notation
 is not? Either both are ampliative or neither is. Since the proof in standard notation
 is not ampliative, it must be the case that Frege's Begriffsschrift proof likewise is not
 ampliative.
 This little argument, although understandable, is wrong. In fact one cannot for-

 mulate Frege's definitions, in particular, those he thinks of as fruitful, in standard
 notation. And although one can in a certain sense rewrite Frege's proof in standard
 notation, something essential is lost in the translation. I will first try to clarify what it
 is that is lost, and then I will argue that the difference this ingredient makes is just the
 difference between ampliative and merely explicative proof.
 It will help to begin with a very different, but (we will see) fundamentally analogous

 case, that of Roman and Arabic numerals. Obviously any natural number expressed in
 Arabic numeration can be "translated" into the system of Roman numeration. If you
 can express a natural number in the one system you can express it in the other. Both
 can furthermore be used to record how many things of some sort one has; both tell
 you, each in its own way, how many. But the system of Arabic numeration also does
 something more. Although numerals in that system can be used to record how many,
 the system was in fact not developed for that purpose, which is already adequately
 served by the older Roman numerals. Arabic numeration was developed as a system of
 written marks within which to do arithmetical calculations. Unlike a Roman numeral,

 which only records how many, an Arabic numeral formulates content as it matters to
 arithmetical operations; it enables one to compute in the system of signs. It is just this
 content that is lost when one moves over to Roman numeration. Roman numeration

 does not formulate content as it matters to arithmetic. All it does is provide a means
 of recording how many.

 The systems of Roman and Arabic numeration are essentially different insofar as
 while the Roman system serves only to record, to say , how many, the Arabic system
 serves to formulate arithmetical content, to show in a written display content as it
 matters to arithmetical calculations. Indeed, unlike the Arabic system, the system of
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 Roman numeration is not essentially written at all. The roles played by the written
 signs, the 'X' for ten things, 4 V' for five, T for one, and so on, could, for instance, be
 played as easily by colored tokens: a blue token (say) could stand for a single thing,
 a red one for a collection of five things, a yellow one for a collection of ten, and so
 on. Putting a red token, two yellow ones, and three blue ones into a little bag would
 then serve as a record of how many, namely, in this case, 28. 18 Unlike the system
 of Roman numeration, the Arabic numeration system is essentially written. It is a
 positional numeration system that utilizes the expanse of the page, and thereby the
 relative locations of the signs, to exhibit arithmetical content. Although one can use
 Arabic numeration to record how many, that system's primary purpose is the quite
 different one of providing a written system of signs within which to perform paper-
 and-pencil arithmetical calculations. This, again, is what is lost in the translation to
 Roman numeration.

 Our standard notations are like the system of Roman numeration insofar as they
 serve to record truth-conditions, what is the case if a sentence is true, and are not

 essentially written. One can speak sentences of ordinary logic as well as read them,
 say what the relevant truth-conditions are as well as write them. This is furthermore
 just what one would expect given that our standard logics aim to capture patterns of
 natural language reasoning. Natural language is first and foremost a spoken (or signed)
 language and a vehicle of communication. Frege's notation, we have seen, is essen-
 tially different. It was designed not to make the logical forms of natural language
 utterances more perspicuous but to exhibit in a kind of a diagram the inferentially
 articulated contents of concepts as they matter to mathematical reasoning. Much as
 Arabic numeration enables one to exhibit the contents of numbers as they matter to
 arithmetic, and Euclid's diagrams enable one to exhibit the contents of geometrical
 concepts as they matter to diagrammatic reasoning, so Frege's concept-script enables
 one to exhibit the contents of concepts as they matter to deductive reasoning in the
 mathematical practice that developed over the course of the nineteenth century and
 remains the norm still today. And in order to do that, we have seen, the notation has to

 function in a very peculiar way: independent of a context of use the primitive signs of

 Frege's concept-script do not designate but only express a sense. Frege's Begriffssch-
 rift was designed in this way to exhibit inferential content, content as it matters to
 inference. This purpose is not served, we will see, by tracing truth-conditions. Much
 as translating an Arabic numeral into Roman numeration deprives us of the capacity to
 do arithmetic in the system of signs, so to translate a formula of Frege's concept-script
 into standard notation is to deprive us of the capacity to reason from defined concepts
 in the system of signs.

 We tend to think of meaning in terms of truth-conditions: what a sentence means,
 we think, is given by what is the case if it is true. And we further tend to think that
 what a valid deduction shows is that if the premises are true then the conclusion is also
 true. We think, in other words, that the truth-conditions of a sentence give one every-

 thing that is necessary for a correct inference, that truth-conditions exhaust inference

 18 Roman numeration as generally used is written insofar as we write (say) four as 'IV' rather than as
 4111', and here the relative spatial locations of the two signs matter. This is, however, a late refinement of
 the system; it is no part of the basic conception of the system of Roman numeration.
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 potential. But as Frege already indicates in "On Sense and Meaning" (Frege 1892),
 this is wrong, and it is wrong even in the case of natural language reasoning, for exam-

 ple, in reasoning involving ordinary proper names. The truth-conditions of, say, the
 sentences 'Hesperus is a planet' and 'Phosphorus is a planet' are identical: the two
 sentences are about one and the same object, whether or not anyone knows it, and
 they obviously ascribe one and the same property to that object. But the inferential
 significance in the two cases is different. It does not follow from the fact that one
 of these sentences is true that the other is true as well, which is why it is possible
 for a rational person to believe one without also believing, perhaps while positively
 denying, the other. It is only if one is given both that, say, Hesperus is a planet and that

 Hesperus is identical to Phosphorus that one can deduce that Phosphorus is a planet.
 Although the two names 'Hesperus' and 'Phosphorus' designate one and the same
 object, they express different senses and as a result have different inference potentials.

 But if so then we need to distinguish between meaning in the sense of truth-conditions,
 what is the case if a sentence is true, and meaning in the sense of inference potential,
 what follows if a sentence is true. The two notions are different.19 Indeed, we have
 seen as much already in the case of Begriffsschrift definitions. Although the defini-
 ens and the definiendum designate the same concept, they have essentially different
 inferential roles: the definiens is variously analyzable in the context of a judgment; the

 definiendum is not. It follows directly that they express different senses.
 Much as both Arabic numerals and Roman numerals can be used to record how

 many, though they do so in different ways, so both a sentence of standard notation
 and the corresponding Begriffsschrift formula can be used to record truth-conditions,
 though they do so in different ways. In standard notation truth-conditions are provided
 directly. The primitive signs are meaningful independent of any context of use and are
 put together in a sentence that serves thereby to record what is the case if the sentence
 is true. (The notation is in this regard quite like the formula language of algebra as
 it was originally designed to be read.) In Frege's concept-script, the primitive signs
 do not designate but only express a sense independent of a context of use, and as
 a result, truth-conditions are available only relative to an analysis into function and
 argument. The language was not designed to trace truth-conditions, any more than
 Arabic numeration was designed to record how many. Begriffsschrift was designed to
 exhibit inference potential, and because it was well designed one can in fact reason
 in the language. Standard notation was not designed as a language within which to
 reason, and it cannot be so used. One can use the language to record what else is true
 if one's given premises are true, but the language does not enable reasoning in the
 system any more than Roman numeration enables arithmetical calculations.

 In our logics it is assumed that inference potential is given by truth-conditions.
 Hence, we think, deduction can be nothing more than a matter of making explicit
 information that is already contained in one's premises. If the deduction is valid then
 the information contained in the conclusion must be contained already in the premises;

 if that information is not contained already in the premises, even if only implicitly,
 then the argument cannot be valid. Indeed it is true generally that in cases in which

 19 See also Macbeth (2005, Chaps. 3 and 4).
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 the inference potential of a sentence is exhausted by its truth-conditions, deduction is
 merely explicative. To say, in such a case, that a proof is deductive just is to say that
 it is merely explicative. But, we have seen, inference potential is not invariably given
 by truth-conditions, either in natural language or in Frege's concept-script. In these
 languages, the two notions are different. And because they are different, the question
 whether one has a deduction or not is different from the question whether the inference

 is ampliative or not.
 Frege indicates that the inference potential of a mere truth-function, even one

 that is formulated in his concept-script, is given by what is the case if the truth-
 function is true. Frege's axioms in Part II, for example, are merely truth-functional.
 And because they are, all the formulae that are derived from those axioms in Part II of

 Begriffsschrift are contained already implicitly in Frege's axioms. And of course the
 same is true in standard logic. Furthermore, in standard logic, definitions, even those
 that involve quantifiers, do nothing to change this. A definition expressed in standard
 notation records necessary and sufficient conditions for the application of a concept.
 It does not show what follows if the concept applies but only says what is the case if
 it applies. A definition in standard notation (even one involving quantifiers) is merely
 truth-functional. A definition in a language such as Frege's is, or at least can be, essen-
 tially different. Although the definition of, for instance, belonging to a sequence is
 merely truth-functional, merely Boolean, the definition of following in a sequence is
 not. Because it involves the concavity, it draws new lines. And hence, Frege suggests,
 what can be inferred from it is contained in it not implicitly but only potentially. We

 need to understand, then, what is the difference between being contained implicitly
 and being contained potentially, and why Frege would think that the representation of
 generality is the difference that makes the difference between the two.

 Frege indicates that using his concavity together with his signs for negation and
 the conditional he is able to exhibit an inference potential that is different from the
 relevant truth-conditions, not merely what is the case if some concept is applied but
 also what follows if it is applied. To illustrate what I think he means I want to consider

 a very simple case, that of the pejorative term 'Boche'. As Dummett points out, "the
 condition for applying the term to someone is that he is of German nationality; the
 consequences of its application are that he is barbarous and more prone to cruelty
 than other Europeans" (Dummett 1972, p. 454). That is, the truth-conditions of 'NN
 is a German' and 'NN is a Boche' are identical; in both cases, the sentence is true iff

 the one referred to has the property of being of German nationality. But the inference
 potentials of the two sentences are very different insofar as it can be inferred from the
 latter but not the former that NN is barbarous and more prone to cruelty than other
 Europeans. It follows directly that the content of 'Boche' is not Boolean. 'Boche'
 does not mean 'German and barbarous'. Nor even does it mean 'German and barba-

 rous-because-German4 given that, as Dummett indicates, to call someone a Boche is
 not to say that they are barbarous. To call someone a Boche is to say only that they
 are German. And yet more follows from calling someone a Boche than it does from
 calling someone a German, and it does because to call someone a Boche is to call
 them a German and to endorse an inference license from something's being German
 to its being barbarous and more prone to cruelty than other Europeans. Something is a
 Boche just in case it is a German and being German entails being barbarous and more
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 prone to cruelty than other Europeans. Thus, as Dummett says, "someone who rejects
 the word does so because he does not want to permit a transition from the grounds for

 applying the term to the consequences of doing so" (Dummett 1972, p. 454). Because
 the concept contains as part of its content this inference license, it can be expressed in
 Frege's Begriffsschrift only by means of the concavity together with the conditional
 stroke.20

 According to Dummett to call someone a Boche is not to say that they are barbarous,

 even implicitly. But an application of the concept to someone nevertheless provides all
 the resources that are needed to draw the inference to the conclusion that the person in

 question is barbarous. As we can put the point, the conclusion is contained potentially
 in the original ascription in the sense that the ascription provides everything needed to

 draw the conclusion. Nevertheless the conclusion is not already drawn by the ascrip-
 tion, even if only implicitly. One has not said that the person is barbarous, despite the
 fact that, again, by saying that the person is a Boche, one has everything needed to
 infer that he or she is barbarous. This, then, is the difference that Frege's concavity
 makes: it enables the expression of the contents of concepts in cases in which those
 contents themselves include inference licenses.

 I have suggested that we read Frege's notation diagrammatically, as exhibiting con-
 ceptual content as it matters to deductive inference in a way that is analogous to the
 way a Euclidean diagram formulates content as it matters to reasoning in that system.
 And much as a demonstration in Euclid enables an extension of our knowledge by
 revealing something new that is achieved by (perceptually) putting together parts of
 different wholes into new wholes, so, I have suggested, a proof from definitions in
 Frege's concept-script enables an extension of our knowledge by revealing something
 new that is achieved by (literally) putting together in joining inferences parts of differ-
 ent wholes into new wholes. Perhaps it will seem that this cannot be right given that, as
 Frege himself says, "surely the truth of a theorem cannot really depend on something
 we do, when it holds quite independently of us" (Frege 1914, p. 207). Indeed, Frege
 makes the remark in the context of a discussion of the status of Euclid's postulates
 aimed at correcting the misimpression that postulates are somehow essentially differ-
 ent from axioms. A postulate is not to be seen as a rule governing the actual drawing
 of lines but instead refers, Frege thinks, to an objective conceptual possibility.21 "So,"
 Frege concludes, "the only way of regarding the matter is that by drawing a straight
 line we merely become ourselves aware of what obtains independently of us." In a
 proof, whether in Euclid or in Frege, the truth that is derived obtains independently of

 20 Notice that the quantifìcational "translation" of the definition does not give what is wanted: x is a Boche

 =c¡fGx&(Vx)(Gx d Bjc). If that were the definition, to call someone Boche would be to assert not only
 that the person is a German but also that each and every German is barbarous, and hence implicitly that the
 person in question is barbarous. In that case, the conclusion is contained already in the premises needing
 only to be made explicit. See Macbeth (2005, Chap. 1), for further discussion of the difference between the
 expression of an inference license in Frege and the corresponding universally quantified conditional.

 21 "Our postulate cannot refer to any such external procedure [as actually drawing lines]. It refers rather
 to something conceptual. But what is here in question is not a subjective, psychological possibility, but an
 objective one" (Frege 1914, p. 207).
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 the activity of writing, independently of drawing lines in a Euclidean diagram and of
 writing theorems in Begriffsschrift. Nevertheless, as Frege indicates, the discovery of
 that truth is not in the same way independent of the activity of writing. Demonstrations

 extend our knowledge not by creating truths but by showing what can be derived on
 the basis of given starting points. The possibility of such a showing is an objective
 possibility; nevertheless, the showing is needed if we are to come to see what is in this

 way available to be seen.22
 A related concern arises in light of the status of definitions as stipulations: if a

 definition is merely a stipulation then it can seem that a conclusion derived from def-
 initions is not properly speaking an objective truth, or at least not a very interesting
 objective truth but merely something provable given the stipulation. But this too is
 mistaken. Although a definition is a stipulation, as Frege says, it is also, along another
 dimension, something about which we can be right or wrong. One cannot be wrong to
 stipulate that some newly introduced sign is to have the same meaning as some other
 collection of signs. But one can be wrong to think that one has in that collection of
 signs set out the inferentially articulated content of some concept. Concepts, which
 are the Bedeutungen of concept words, are something objective on Frege's view; it is
 not up to us to decide what concepts there are, even in mathematics and logic. One's
 proposed definition can fail to designate any concept. It is, then, a fully objective mat-

 ter what logical bonds actually obtain among concepts. We can make mistakes, even
 in mathematics and in logic. In particular, we can think that we have a proof of some
 theorem when in fact, as we may eventually discover, the conceptions on the basis of
 which the "proof" proceeds are flawed.
 Judgment, conceived following Frege as an acknowledgement of a true thought,

 can succeed only if the relevant thought is true ; and inference similarly, which aims
 to acknowledge a truth on the basis of another truth, can succeed only if the ground
 of the inference is true and the passage is legitimate. But if so, then it can happen
 that although it might seem to a thinker that a logical bond among concepts has been
 revealed in the course of a proof such as Frege's, in fact it has not. The possibility,
 or impossibility, of showing that those bonds obtain is not in any way dependent on
 the proof; and it is this possibility, or impossibility, that insures that even deductive
 reasoning from definitions is answerable to something outside of it. One can extend
 one's knowledge by reasoning on the basis of definitions by logic alone precisely
 because the truth that is revealed in the proof is in this way independent of what we
 do, including what we do in stipulating in a definition.

 22 Is it significant in this context that Frege holds that geometry is synthetic although arithmetic and logic
 are not? I do not see that it is. To say that geometry is synthetic is, for Frege, to say that its proofs rely on
 truths that "are not of a general logical nature, but belong to the sphere of some special science", namely, in
 this case to the sphere of geometry (Frege 1884, §3). Frege's proof of theorem 133 is not synthetic in this
 sense but instead analytic; it relies "only on general logical laws and definitions" (ibid.). Yet it is, Frege
 holds, ampliative "and ought therefore, on Kant's view, to be regarded as synthetic" (Frege 1 884, §88). What
 Frege's work reveals, then, is that Kant's distinction has been superseded. The question whether a chain
 of reasoning can extend our knowledge must be kept separate from the question whether the conclusion is
 analytic or synthetic in Frege's sense, that is, whether it depends on logic or definitions alone or also on the
 non-logical laws of some special science.
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 6 Conclusion

 In Frege's concept-script, we have seen, definitions are necessary if one is to prove
 something about the defined concepts with which one begins. One needs the defined
 sign, the definiendum , if one is to prove something about the particular concepts one
 cares about; but one needs also the definiens if the needed logical bonds are to be
 forged. Only a proof that begins with definitions, and indeed with fruitful definitions,

 definitions that are not merely truth-functional, can be ampliative. But it is equally
 true that only within a proof are definitions of any interest; because definitions are
 stipulations, the judgments that follow from them taken one by one are, we have seen,

 utterly trivial. It is only definitions and proofs working together that can yield some-

 thing new. Only within a proof can the peculiar power that resides in definitions by
 their nature as stipulations regarding simple and complex signs be harnessed to realize
 something new. In a slogan: proofs without definitions are empty, merely the aimless
 manipulation of signs according to rules; and definitions without proofs are, if not
 blind, then dumb. Only a proof can realize the potential of definitions to speak to one
 another, to pool their resources so as to realize something new.

 Frege's Begriffsschrift proof of theorem 133 on the basis of his four definitions is,

 then, ampliative although his derivations in Part II are not. Frege's proof extends our
 knowledge by showing us how to generate the desired theorem, and thereby reveals
 a certain logical bond among the defined concepts. And this is made possible, I have
 argued, by the peculiar nature of Frege's notation, by the fact that a definition formu-

 lates, that is, shows (or at least purports to show) the inferentially articulated content
 of a concept rather than merely saying what it is. Much as a Euclidean diagram formu-

 lates the contents of geometrical concepts in a way that enables a course of reasoning
 that reveals various logical relations among those concepts, so a definition in Frege
 formulates the contents of mathematical concepts generally in a way that enables a
 course of reasoning revealing various logical relations among concepts. Although all
 the details are different, Frege, like Euclid, puts the content of a concept before one's
 eyes in a two-dimensional array, a kind of diagram, and does so in a way that enables
 reasoning from the content of that concept in the system of signs. As Euclid's system
 of diagrams is, Frege's is a language within which to reason from the contents of con-

 cepts in mathematics and to discover thereby truths that extend our knowledge. Just as
 Frege says (1884, §88), in a Begriffsschrift proof from fruitful definitions the theorem

 is contained in the definitions not as beams are contained in a house, that is, implicitly,
 needing only to be made explicit, but potentially, as a plant is contained in the seed.

 Acknowledgments I am grateful to two anonymous referees for very helpful comments on an earlier
 draft of this essay.
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